Introduction to SLURM
SLURM (Simple Linux Utility for Resource Management) is a highly flexible and powerful job scheduler for managing and scheduling computational workloads on high-performance computing (HPC) clusters. SLURM is designed to efficiently allocate resources and manage job execution on clusters of any size, from a single server to tens of thousands. SLURM manages resources on an HPC cluster by dividing similar compute nodes into partitions. Users submit jobs with specified resource requirements to these partitions from a login-node, and then the SLURM controller schedules and allocates resources to those jobs based on available resources. SLURM also stores detailed usage information of all jobs in a usage accounting database, which allows enforcement of fair-share policies and priorities for job scheduling for each partition.
BioCloud SLURM cluster overview

(Note: the exact partitions in the figure may be outdated, but the setup is the same)
Getting started
Start with obtaining shell access to one of the login nodes bio-fe[01-02].srv.aau.dk, as described on the SSH access page. To start with it's always nice to get an overview of the cluster, it's partitions, and how many resources that are currently allocated. This is achieved with the sinfo command, example output:
$ sinfo
PARTITION AVAIL TIMELIMIT CPUS(A/I/O/T) STATE REASON NODES NODELIST AVAIL_FEATURES
interactive up 1-00:00:00 70/218/0/288 mixed none 1 bio-node11 zen5,epyc9565
zen5 up 14-00:00:0 456/120/0/576 mixed none 2 bio-node[12-13] zen5,epyc9565
zen5 up 14-00:00:0 106/150/0/256 mixed none 1 bio-node17 zen5,epyc9535
zen5 up 14-00:00:0 0/256/0/256 idle none 1 bio-node16 zen5,epyc9535
zen3* up 14-00:00:0 164/92/0/256 mixed none 1 bio-node01 scratch,zen3,epyc7713
zen3* up 14-00:00:0 46/146/0/192 mixed none 1 bio-node02 zen3,epyc7552
zen3* up 14-00:00:0 270/306/0/576 mixed none 3 bio-node[03,06- zen3,epyc7643
zen3* up 14-00:00:0 90/102/0/192 mixed none 1 bio-node05 scratch,zen3,epyc7643
zen3* up 14-00:00:0 192/0/0/192 allocated none 1 bio-node04 zen3,epyc7643
zen5x up 14-00:00:0 276/300/0/576 mixed none 2 bio-node[14-15] scratch,zen5,epyc9565
zen3x up 14-00:00:0 164/28/0/192 mixed none 1 bio-node08 zen3,epyc7643
zen3x up 14-00:00:0 100/156/0/256 mixed none 1 bio-node09 zen3,epyc7713
gpu-a10 up 14-00:00:0 0/64/0/64 idle none 1 bio-node10 scratch,zen3,epyc7313,a10
To get an overview of running jobs use squeue, example output:
# everything
$ squeue
JOBID NAME USER ACCOUNT TIME TIME_LEFT CPU MIN_MEM ST PRIO PARTITION NODELIST(REASON)
2144804 OOD-RStudioServer user01@stu students 4:13:59 4:46:01 10 64G R 340 interactive bio-node11
2144803 OOD-VirtualDeskto user02@bio kln 5:07:40 6:52:20 12 24G R 325 interactive bio-node11
2144808 OOD-RStudioServer user03@bio phn 3:14:15 1:45:45 20 100G R 270 interactive bio-node11
2144913 OOD-CodeServer user04@bio md 46:11 7:13:49 10 20G R 142 interactive bio-node11
2144912 OOD-RStudioServer user04@bio md 46:21 7:13:39 4 25G R 141 interactive bio-node11
2144807 OOD-RStudioServer user05@bio ma 3:31:15 8:28:45 1 12G R 78 interactive bio-node11
2144806 OOD-CodeServer user05@bio ma 3:31:28 8:28:32 1 8G R 78 interactive bio-node11
2144816 OOD-RStudioServer user06@bio ma 2:51:17 5:08:43 10 50G R 75 interactive bio-node11
2141338 semibin.S16 user07@bio md 3-00:49:43 10-07:10:17 64 300G R 351 zen3 bio-node04
2141351 concoct.S16 user07@bio md 2-23:31:34 10-08:28:26 32 300G R 342 zen3 bio-node01
2141299 817356b7-2ccc-4b9 user08@bio ma 1-04:52:39 6-19:07:21 90 900G R 284 zen3 bio-node03
2141298 817356b7-2ccc-4b9 user08@bio ma 1-05:47:55 6-18:12:05 90 900G R 284 zen3 bio-node07
2141297 817356b7-2ccc-4b9 user08@bio ma 1-08:20:52 6-15:39:08 90 900G R 284 zen3 bio-node05
2141290 817356b7-2ccc-4b9 user08@bio ma 1-13:22:11 6-10:37:49 90 900G R 284 zen3 bio-node06
2141259 mmlong2 user08@bio ma 3-08:33:36 5-15:26:24 65 300G R 278 zen3 bio-node01
# your own jobs only
$ squeue --me
JOBID NAME USER TIME TIME_LEFT CPU MIN_ME ST PARTITION NODELIST(REASON)
3333 as-predictio user09@bio 2-19:42:49 6-04:17:11 5 16G R gpu-a10 bio-node10
Or get a more detailed overview per compute node of current resource allocations and which jobs are running etc. This will normally show some colored bars, but they are not visible here.
$ sstatus
Cluster allocation summary per partition or individual nodes (-n).
(Numbers are reported in free/allocated/total).
Partition | CPUs | Memory (GB) | GPUs |
=====================================================================================================
interactive | 220 68 /288 | 1198 303 /1501 |
zen5 | 537 551 /1088 | 2572 3433 /6005 |
zen3 | 649 759 /1408 | 967 5512 /6479 |
zen5x | 300 276 /576 | 942 3572 /4514 |
zen3x | 184 264 /448 | 604 3383 /3987 |
gpu-a10 | 64 0 /64 | 241 0 /241 | 2 0 /2
-----------------------------------------------------------------------------------------------------
Total: | 1954 1918 /3872 | 6525 16204 /22729 | 2 0 /2
Total resources requested from queued jobs:
CPUs: 74 (3.6K CPU hours)
Jobs running/queued/total:
42 / 1 / 43
Use sinfo or squeue to obtain more details.